ROAD TO HYDROGEN FUTURE

Paul Lucchese,
IEA Hydrogen TCP Chairman

ERRA WEBINAR ON HYDROGEN
4th November 2021
Family: A three pillar organization
An unprecendented Modernization Plan
All technologies, beyond OECD and increase TCP network collaboration

An Influent expert international organization

PARIS Secretariat Team (300 people) led by Fatih Birol

Network of 39 TCPs 6000 expert’s network

Topics covered (among others):
Renewables, Smart Grid, oil gas, CCS, Hydrogen, Fuel cells, Electric vehicle, combustion, ICE, Fusion, Heat and Cooling, storage, heat pump...
Energy mix in 2050-2070: Trajectory to a zero carbon world in 2070 or 2050?

Main assumptions

- IEA SDS Scenario: Final primary energy demand will remain stable: 15280 MToe 2070 for 14600 Mtoe in 2020) despite economic growth (3% /Y, GDPx2,5) and population growth (9,9 Md Inhabitants by 2050)

- Energy efficiency gain, electrification etc

- Ratio Energy/GDP unit: divide by 2,8 in 2070(, 2,2% per year (-1,6 % between 1990 and 2020)

- Huge investment needed x4 - x8 relative to today's level

- PV + Wind: x25-x50 = 50-100 TW

Source: IEA ETP 2020

STEPS: Stated Policies scenarios
SDS Net Zero Emissions by 2070
SDS 2050: Net Zero in 2050
Reminder: 4 main uses for Low Carbon Hydrogen

Hydrogen will be key to:
- Sector coupling
- Flexibility
- Decarbonizing hard to abate sectors
- Optimizing existing assets
- Energy security and economic growth (local production)
- Energy access (isolated locations)

Existing applications
- Refineries, ammonia, methanol, HMD etc

INDUSTRY
- Heat or chemical properties
- Biofuels, synfuels, NH₃, steel and metals, cement...

MOBILITY
- Electric power train
- Turbine, ICE

STORAGE
- Renewables integration
- H₂ gas
- Fuel cells
- Storage on board
- Dedicated infrastructure

NEW APPLICATIONS
- Buildings, Cities
- Gas network
- CHP
- Combined Heat and Power

COMBUSTION
- Hydrogen injection in gas grid, turbine...

POWER TO POWER
- Electrolysis
- Turbine Fuel cells

Electrolysis
- Turbine Fuel cells

Power to Power
- Electrolysis Turbine Fuel cells

CHP
- Combined Heat and Power

Embedded in liquefied fuel:
- ammonia, biofuels, synfuels

Gas: Methane Hydrogen...

Hydrogen will be key to:
- Sector coupling
- Flexibility
- Decarbonizing hard to abate sectors
- Optimizing existing assets
- Energy security and economic growth (local production)
- Energy access (isolated locations)
Global hydrogen use expands from less than 90 Mt in 2020 to To reach 400-600 Mt in 2050!! And represent 10 to 20% of final energy demand
Hydrogen Value Chain
What are the main challenges?

1. Scale up, Total cost of the whole hydrogen chain and business models
2. Regulatory framework: green, decarbonized hydrogen
3. New Geopolitics of Hydrogen: hydrogen as a commodity or limiting factors?
What does scale-up mean if hydrogen represents 10 - 20 % of final energy demand?

Renewables PV and Wind: 1 300 GW deployed

Climate change target : X by 30 to 60

From 1,3 TW to 50-100 TW (100 000 GW)

Investment from 380B $/year (2020) to 1 600B$/year 2030

Hydrogen in 2030: objectives

World 40 millions tons (equivalent 270 GW full time)

Europe: 40 GW ou 2x40 GW electrolysers near 7 millions tons

Hydrogen in 2050 - 2070

15 % final energy consumption

IEA: 420 Millions tons (**x6 today’s production**)
Electrolyser capacity 4000 GW (4 TW or **3,4 TW according to IEA**) full time equivalent

PV or wind park needed: between 12 and 30 TW

Nuclear needed: 5 TW
Total cost of hydrogen

Basic Equation

Total cost (LCOH) = cost of production + cost of transport/storage + cost distribution/storage + cost CO₂ taxes

Cost of production (Electrolyzer pathway) = Function (electricity cost, capex, load factor)

TCO (Total Cost of ownership) = Cost of Hydrogen + Capex (vehicle, process, etc) + OPEX

- Low carbon Hydrogen costs are country-dependent, costs of local energy, local electricity cost, existence of CCS possibilities, CO₂ price, and also distance of an end-use application, industrial H-based process etc...
Business models are application-dependent

- BM: Order of merit: Easier for transport than industry, gas grid injection and Power To Power

- Importance of public funding and incentives

- Debate on business model local ecosystem, semi-centralized production hub or centralized/Import model

- Question of transport infrastructure will be key

- Matter of time and deployment
Need for an appropriate Regulatory Framework

The colours of hydrogen

1. Guarantee of Origin, low carbon or Renewable Certificate
2. Complex contractual framework (PPA...) Risks for investors
3. CO₂ price
4. E-fuels certification
5. Safety
6. Codes and Standards
New geopolitics of hydrogen

• Reaching 1€/Kg or less is more than likely in medium term in some areas
• Many projects and bilateral Agreements between Governments (Japan, Germany, Australia, Spain, The Netherlands, Persic Gulf, Chile, etc)
• Main Bottlenecks for Hydrogen export:
 • Cost and efficiency of hydrogen carriers (LOHC, NH₃, Methanol) for overseas transport
 • Large pipes transport grid at inter-regional level
 • Hydrogen carrier must be more energy intensive at Export port than in Import Port
 • International regulation and framework for international trade
 • Renewables projects at scale will take decades?
• Producing and exporting hydrogen-based products used as such (avoiding one transformation step) >> New industrial Landscape
 • Ammonia for direct combustion, E-fuels for ICE and turbines, Steel industry delocalized?
• What will be the trade off between pure H₂ use and indirect use?

Source IEA, 2019
The future of Hydrogen, Webinar
Which could be the limiting factors for renewable hydrogen?

- Critical or current materials, circular economy
- Security of supply and geopolitics
- Land use and social acceptance
- Technological breakthroughs
- Safety

Cumulative demand 2050 compared to proved reserve in 2010

<table>
<thead>
<tr>
<th>Material</th>
<th>Scénario 4°C</th>
<th>Scénario 2°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cobalt</td>
<td>62.2%</td>
<td>53.6%</td>
</tr>
<tr>
<td>Cuivre</td>
<td>82.7%</td>
<td>96.1%</td>
</tr>
<tr>
<td>Lithium</td>
<td>17.1%</td>
<td>26%</td>
</tr>
<tr>
<td>Nickel</td>
<td>48.5%</td>
<td>56.6%</td>
</tr>
<tr>
<td>Terres rares</td>
<td>1.6%</td>
<td>3.8%</td>
</tr>
</tbody>
</table>

Land usage: Nuclear 4-10 ha/TWh, PV 500-800 ha/TWh

Concrete and steel: A nuclear plant need 8 to 10 times less concrete and 10 to 20 times less steel per TWh

Limiting factors
- Critical materials Pt Ir Sc Y La Ce Zr Gd)
- Plus PV Wind critical material Cu ...
- Land use: 1 TW= 10 000 km2
- Long distance transport infrastructure
Hydrogen TCP: Current Members

32 Members
- 24 Member Countries
- 6 Sponsors
 - European Commission + UNIDO

40+ Tasks
- 4 Ongoing
- 38 Finished
- ≈ 10 in definition

250+ Experts involved
In collaborative research on hydrogen and hydrogen technologies
Status + Strategic Plan (2020-2025)

Vision
A hydrogen future based on a clean, sustainable energy supply of global proportions that plays a key role in all sectors of the economy.

Mission
Accelerate H₂ implementation and utilization to optimize environmental protection, improve energy security and economic development.

Strategy
Facilitate, coordinate and maintain innovative research, development and demonstration activities through international cooperation and information exchange.

Members
24 Member Countries
6 Sponsors
European Commission + UNIDO

Tasks
4 Ongoing
38 Finished
≥ 10 in definition

Experts involved
In collaborative research on hydrogen and hydrogen technologies

Experts involved

250+ experts involved in collaborative research on hydrogen and hydrogen technologies.
Perspectives

• Publish **Final Report** Task 37 - Hydrogen Safety and other **Task deliverables** (Task 40 and Task 41). **Task 38 and 39 Final Reports already available in our website.**

• Start new **Tasks** (currently in definition)

• Welcome new **members**

• Boost **collaboration** both within and outside the IEA Network
Thank You!

For more information, please contact Marina Holgado, Technical Secretariat Coordinator:
marina.holgado@ieahydrogen.org